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STRESS DISTRIBUTION IN A SLIP TRACE

OF DEFORMED Ni3Ge SINGLE CRYSTALS

UDC 539.4.015Yu. A. Abzaev and V. A. Starenchenko

The shear-stress distribution produced by distortion of Ni3Ge single crystals under compression is
studied. The evolution of the dislocation structure during deformation of Ni3Ge single crystals of
various orientations ([2̄34], [1̄11], [1̄39], and [001]) at T = 77, 293, 523, 673, and 873 K is analyzed. It
was found that, up to failure strains, the dislocation structure is characterized by a uniform dislocation
distribution. Regardless of the strain-axis orientation, the linear relation τ = f(ρ0.5) is valid for all
the test temperatures except for T = 77 K. The deviation from the linear relation at T = 77 K
is due to the suppressed thermally activated slip of dislocations in nonuniform-strain fragments at
the specimen edges. In these fragments, the shear stresses are substantially reduced, and hence, the
stresses produced by the dislocation cluster retard the development of slip in this trace.
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In Ni3Ge single crystals deformed under compression, strain-fragmentation regions are formed as a result of
specimen distortion during shear [1, 2]. The effect of distortion of specimens under compression on the distribution
of applied shear stresses has not yet been studied, and their role in the interdislocation interaction is not understood.

The goal of this work is to study the effect of distortion of a specimen under compression and stresses caused
by fragmentation at the specimen edge on the shear-stress distribution along slip traces.

We studied the evolution of the dislocation structure (DS) during deformation of Ni3Ge single crystals of
various orientations ([2̄34], [1̄11], [1̄39], and [001]) at test temperatures T = 77, 293, 523, 673, and 873 K. In [3–10],
it was found that the DS is characterized by a uniform dislocation distribution up to failure strains. Figure 1 shows
the shear stresses τ versus the dislocation density ρ for all the orientations and test temperatures considered. One
can see that the linear relation

τ = τF + αGbρ0.5 (1)

holds for all values of T except for T = 77 K. Here τF is the stress of dislocation self-retardation, α is the parameter
of interdislocation interaction, b is the magnitude of the Burgers vector of dislocations, and G is the shear modulus.
As the temperature increases, the slope of the straight lines τ = f(ρ0.5) decreases. The temperature also affects the
stress τF . Formula (1) approximates experimental data, which shows that the contact interdislocation interaction
plays a dominant role in hardening of Ni3Ge single crystals [11–23]. The conventional strain εconv, the contributions
of the reactions τ1 and stoppers of arbitrary types τ2 to deformation resistance, the long-range stresses σ1 caused
by adjacent dislocations, the noncompensated fields σ2, the stresses of dislocation self-retardation τF , and the
shear stresses τsh for various test temperatures are listed in Tables 1–3 for the orientations [1̄11], [1̄39], and [2̄34],
respectively. The method for calculating these quantities for Ni3Ge single crystals in the [001] orientation is described
in [3]. The data that allow one to determine the confidence intervals with a significance level of 99% for reactions µ1

and those for stoppers of arbitrary types µ2 are also given in Tables 1–3. The confidence interval of contributions
of reactions and stoppers is determined by the formulas τ1 ± µ1 and τ2 ± µ2, respectively. The dominant role in
producing shear stresses is played by contact retardation of dislocations. We consider the additive contribution
of various mechanisms of dislocation retardation. The contribution of stoppers of arbitrary types is much higher
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Fig. 1

than that of long-range stresses. The contribution of stoppers of arbitrary types is mainly due to reactions. The
main part of shear stresses is composed of noncompensated long-range stresses and self-retardation of dislocations.
The long-range fields produced by adjacent dislocations are negligible. It was found that the effect of deformation-
resistance mechanisms varies with an increase in the test temperature. In the neighborhood of peak anomalous
flow stresses, superposition of individual contributions is smaller than shear stresses. This can be explained by an
increasing role of virtual rectilinear barriers [7, 8, 10]. However, the main contribution to deformation resistance
is made by mechanisms of contact retardation of dislocations. An analysis of Tables 1–3 shows that shear stresses
are determined by mechanisms whose action is proportional to the linear density of stoppers at the dislocation line.
Elastic stress fields of dipoles, which can lead to deviation from relation (1), are insignificant part of shear stresses
and decrease as strains increase [3]. The relation τ = f(ρ0.5) is nonlinear for all the orientations studied at T = 77 K
(Fig. 1). An analysis of the slip-band pattern on the surface shows that rough slip occurs at T = 77 K. Similar
results were obtained in [24]. At T = 77 K, thermally activated motion of dislocations is suppressed. Dislocations
are appreciably attached to their slip plane. Slip fragmentation caused by distortion of single crystals with increasing
strain shows that the external-stress distribution along the slip traces at the specimen edges is nonuniform [1, 2].

We consider the shear-stress distribution along the slip trace LPDF (Fig. 2). Upon leaving the region of
uniform strain at the point D, the dislocations in the slip plane continue to move as shear stresses decrease. They
cease to move upon attaining a point in the trace at which the external stress approaches the yield point (point T
in Fig. 2b). In the local volume considered, the shear stresses act on the upper surface only (Fig. 2a). On the lower
surface, the stresses vanish along the strain axis. As a result, the trace of the slip system passes from the line DE
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TABLE 1

T , K εconv, % τ1, MPa τ2, MPa σ1, MPa σ2, MPa µ1, MPa µ2, MPa τsh, MPa τF , MPa

5.57 22.3 74.3 12.2 39.6 10.3 20.7 58.9
77 10.13 12.9 69.0 10.2 43.0 7.8 21.2 80.4 20

19.5 28.2 75.6 14.4 36.2 9.2 14.9 165.8

5 49.7 190 37.4 79.3 24.0 32.7 168.1
293 10 84.6 198 56.8 98.1 36.3 40.0 312.0 48.5

16 55.6 229 51.5 121.0 30.2 46.9 328.0

5 60.1 148 23.0 74.6 14.7 30.6 239.1

523
10 48.0 119 22.2 77.7 13.4 31.2 295.1

3.8
16 103.0 223 62.5 113.0 40.0 44.4 352.2
21 110.0 286 69.4 142.0 40.8 53.7 150.6

10 82.6 175 39.7 81.5 24.7 32.7 264.1
673 15 94.1 226 39.2 132.0 25.1 53.6 340.8 20

21 119.0 253 48.6 132.0 31.1 41.0 472.0

5 24.6 101 11.4 43.7 7.1 17.7 156.5

873
11 39.5 112 24.2 57.9 15.0 23.8 153.3

47
18 48.3 110 18.4 66.1 11.4 27.6 221.0
30 53.3 138 32.4 82.7 27.6 34.5 212.3

TABLE 2

T , K εconv, % τ1, MPa τ2, MPa σ1, MPa σ2, MPa µ1, MPa µ2, MPa τsh, MPa τF , MPa

5 30 72 13 27 8 11 71.0
77 10 38 92 16 28 4 11 154.4 20

18 76 148 35 68 21 20 250.0

2.8 120 280 44 95 28 41 564.2

293
5 150 260 43 73 26 29 696.2

100
7.8 170 300 46 88 27 35 911.6
11 190 370 54 110 32 36 1064.2

2.45 73 150 49 55 15 22 585.9
523 6.8 82 190 32 59 19 24 703.1 348

9 91 200 43 75 25 30 732.3

2.3 42 100 21 41 13 16 322.9
673 6.4 68 210 36 89 21 36 398.6 167

8.45 84 200 31 80 19 32 448.6

4.8 39 83 24 38 13 15 186.2
873 7.24 38 88 21 36 12 14 177.8 74

12.6 45 120 21 61 12 23 183.4
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TABLE 3

T , K εconv, % τ1, MPa τ2, MPa σ1, MPa σ2, MPa µ1, MPa µ2, MPa τsh, MPa τF , MPa

5 24 56 13 26 8 10 90
77 8 32 75 15 35 9 14 130 10

15.5 45 100 17 55 10 22 160

77 24.65 40 130 21 69 13 27 260 32.4

293
6.5 63 130 29 72 18 30 271.2

32.4
13.5 89 190 45 82 27 33 497

293 16.5 130 250 67 120 39 49 503 1.7

5 44 110 32 49 11 21 162
10.62 63 140 44 68 18 29 265

523 16.4 71 150 33 55 21 23 328 1.7
21.4 93 180 39 68 24 28 359
25.09 100 210 39 94 24 38 440

5 41 77 21 34 13 15 181

673
11.1 56 110 29 46 19 19 252

67
16.7 55 140 26 70 16 29 238
21.3 60 170 42 86 17 35 301.2

6 22 69 13 38 8 16 127
4.6 29 56 17 31 10 13 112.4

873
15.1 34 84 18 39 11 11 185

54
19 38 83 17 37 10 15 160

26.7 27 48 19 25 12 10 182
33.2 40 86 17 54 11 22 130.1

Fig. 2

to the line DF (Fig. 2a). Figure 2b shows the considered region DEF . Obviously, the slope of the line DE is
determined by accumulated shear power DF . By virtue of uniformity, the shear stresses at different points of the
trace PD in the region ABKV (Fig. 2a) are identical and coincide with applied external stresses.

We now consider the shear-stress distribution along the trace DF . The final configuration of the region DEF
(Fig. 2a) can be assumed to result from the following displacements. Under the action of stresses, the point N
(Fig. 2b) is shifted to the point D. At the point F , the applied stresses vanish. To determine strains at the point T
at the line DF , we use the finite-element method [26]. The coordinates of the points D, T , and F at the line DF
are related by the equation

yT − yF
yD − yF

=
xT − xF
xD − xF

or yT =
yD
xD

xT . (2)
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Fig. 3

Dividing Eq. (2) by l0 (initial length of the specimen), we obtain the following relation between the relative
displacements uD and uT at the points D and T :

uT = (uD/xD)xT , uT = (xT /xD)uD. (3)

We consider the triangle DMF . Using the sine theorem, we obtain

|DF |/ cosβ = |DM |/ cos (α+ β), (4)

where xD = |DM | and β is the slope angle of the slip plane. Before deformation, we have |DF | = |DE|. Under
compression along the line ND, the line DF is stretched. Provided the strain volume remains unchanged, the
variation in the cross-sectional area is given by Sε = S0 exp (+ε), whence |DF | ≈ |DE| exp (+ε/2) (the plus denotes
extension). For nonuniform strains at the line DF , this relation is approximate. Substituting the values of |DF |
and |DM | into formulas (3) and (4), respectively, we obtain

xT
|DE|

=
cos (α+ β)

cosβ
exp

(
+
ε

2

) εT
εD

. (5)

We write Eq. (5) in terms of stresses. To this end, we assume that the relative displacements at the points N
and T (Fig. 2b) occur in the region of elastic strains of the crystal lattice and, hence, they are proportional to
stresses:

xT
|DE|

=
cos (α+ β)

cosβ
exp

(
+
ε

2

) τT
τD
. (6)

If the current stress at the point T is equal to the yield point, i.e., τT = τ0.2, one can use formula (6) to
estimate the yield-point distribution along the trace DF . The external stresses along the line DF decrease from
maximum values at the point D equal to applied external stresses to minimum values at the point F .

In this case, x0.2/|DE| in (6) is the relative magnitude of the trace DF ; at the segment DT of this trace,
external stresses decrease to the yield point. The slope of the trace at the specimen edge was determined exper-
imentally for different levels of strain. For the [2̄34] orientation, it was found that α = 1, 2, 3, 5, and 8◦ and
σD = 68.8, 99.0, 164.1, 273.7, and 427.0 MPa for the strain ε = 4, 8, 15, 20, and 24%, respectively. The yield point
is τ0.2 = 46.9 MPa. The calculation results are shown in Fig. 3. Along the line DF , the flow stresses decrease
abruptly from σ = 427 MPa at the point D to the yield point at a distance of approximately 0.1|DF |. This means
that stresses acting on the remaining part of DF are too low to cause shear strain. Deformation in the shear zone
can be caused only by long-range stresses of dislocations newly formed in a cluster, which shift previously formed
dislocations toward the crystal surface. In this case, the stress fields are strongly nonuniform. The specific feature
of this mechanism is that movable dislocations (see Fig. 2c) and the dislocation cluster 1–4 lie in the same slip
plane, and shear along the trace TF is difficult to occur. It is likely that the revealed mechanism of slip termination
is most pronounced at low temperatures (T = 77 K), since thermally activated processes are difficult to develop
in this case. Dislocations are strongly attached to the shear zone, and, as a result, the long-range stresses must
increase to shift the dislocations in the cluster to the specimen surface.
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The relative displacements of the points N and T (see Fig. 2b) due to deformation can be expressed in
terms of the conventional strain of the specimen εconv at these points. Indeed, the strain at the point N is given by
(lN − l0)/l0 = (l0− |ND| − l0)/l0 = −|ND|/l0 = εconv and that at the point T is (l0− yT − l0)/l0 = −yT /l0 = εconv

(the minus denotes compression). The relative displacements are equal to the conventional strains of the specimen
at the points N and T .

The true strain ε and the conventional strain εconv are related by the formula ε = ln (1 + εconv) and differ
only slightly for strains varied within 20%.

We use the finite-element method assuming that the line DF remains straight. The physical basis of this
assumption is as follows. Rotation of the line DF corresponds to the plane problem. We calculate the ratio of
the increments uT /∆x of the point T on the line DF (uT is the displacement along the strain axis and ∆x is the
displacement in the perpendicular direction). For small angles α, this ratio is proportional to tanα [27]. For a
constant strain volume, we have

uT
∆x
≈ l0 exp (−ε)− l0
S0.5

0 exp (+ε/2)− S0.5
0

.

Passing to the limit as ∆x→ 0, we obtain

l0
dεconv

dx
= l0

exp (−ε)− 1
S0.5

0 (exp (+ε/2)− 1)
,

dεconv

dx
= C

exp (−ε)− 1
exp (+ε/2)− 1

, (7)

where C = const and S0 is the initial cross-sectional area of the specimen. Using the above-mentioned relation
between the true and conventional strains, we write the solution of Eq. (7) in the form

2 exp (+3ε/2)3 exp (+ε) + 6 exp (+ε/2)− 6 ln (1 + exp (+ε/2)) = −3Cx+D, (8)

where D = const. Expanding the left side in (8) into a power series, we obtain

(5− 6 ln 2) + 1.5ε+ (57/16)ε2 + . . . = −3Cx+D.

For ε = 19%, the quadratic term in the solution is smaller than the linear term by almost a factor of 3. Therefore,
it can be assumed that the linear relation ε = f(x) is valid, i.e., approximation of DF by a straight line in the
finite-element method is physically justified. Retaining quadratic terms in (8), we obtain the parabolic relation
ε2 = f(x).

Let us estimate the possible contribution of the reversed stress caused by dislocations accumulated at the
specimen edge to deformation resistance and also the deviation from relation (1). A cluster of dislocations is formed
along the slip trace DF (see Fig. 2b and c). In the tail of the cluster, the shear stresses approach the yield point.
It is assumed that dislocations cannot slide at these stresses. The first dislocation ceases to move near the point T .
The second dislocation that follows the first one (it also ceases to move near the point T ) shifts the first dislocation
along the trace at a distance where the sum of stresses of interaction between these dislocations and the external
stress that acts on the first dislocation (this sum is smaller than the yield point, which is taken into account by the
coefficient γ) becomes equal to the yield point. We write the condition of equilibrium for the first dislocation:

γτ0 +Gb/(2πKx1) ≈ τ0. (9)

Here x1 is the distance between the first and second dislocations, τ0 is the yield point, γτ0 is the stress acting on
the first dislocation, and K = 1−ν (ν is Poisson’s ratio). We estimate the distance x1 at which the first dislocation
is shifted toward DF . Obviously, the quantity γ is indeterminate. We assume that the first dislocation passed a
distance such that the applied stresses decrease to 0.9 of the yield point (γ = 0.9). Consequently, Eq. (9) can be
written in the form

Gb/(2πKx1) ≈ 0.1τ0. (10)

We calculate the distance x1 for the [1̄11] orientation. The shear modulus G is taken to be 8 · 104 MPa,
ν = 1/3, b = 0.25 nm, and the yield point is τ0 ≈ 55 MPa. Substitution of these values into formula (10) yields
x1 ≈ 870 nm. We consider the formation of the dislocation cluster in the slip trace DF and estimate the number
of dislocations for the strain ε ≈ 19.5%. In this case, the shear stresses are τ ≈ 165 MPa. We write the equation of
equilibrium of the nth dislocation near the point T (see Fig. 2c):

Gb/(2πKx1)(1 + 1/2 + 1/3 + 1/4 + . . .+ 1/n) ≈ τ. (11)
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In formula (11), the following approximation is used. The dislocations in the cluster are distributed uniformly and
the distance between them is equal to x1. The bracketed numerical series is divergent. We find a partial sum of the
series. For a sufficiently large number of terms, we have [17, 25]

Sn = 1 +
1
2

+
1
3

+
1
4

+ . . .+
1
n
≈

n∫
1

dn

n
= lnn. (12)

More accurate estimates of the partial sum given in [25] show that Sn ≈ lnn+ 5.6. Substituting the partial
sum Sn from formula (12) into formula (11) and assuming that the applied stresses are equal to τ ≈ 165 MPa, we
obtain the number of dislocations n in the cluster:

Lnn ≈ 2π(1− ν)x1τ/(Gb)− 5.6.

For the parameters chosen, this formula yields n ≈ exp (24.4) ≈ 4 · 1010. Obviously, this number of dislocations
in the cluster DF is overestimated. Most of these dislocations arrive at the surface and form a rough trace. We
estimate the possible number of dislocations, in the trace DF , that can be held by the first dislocation in the cluster.
To this end, it is necessary to write the equation of equilibrium of the first dislocation (see Fig. 2c). This dislocation
can retard the motion of n − 1 subsequent dislocations in the cluster if superposition of paired interactions of all
dislocations with applied stresses does not exceed the yield point for the first dislocation. Since the parameter γ
is indeterminate, the calculations are approximate. Setting γ = 0.1, we obtain τ ≈ γτ0 = 0.1τ0. The equation of
equilibrium (11) becomes

0.1τ0 +Gb/(2πKx1)(1 + 1/2 + 1/3 + 1/4 + . . .+ 1/n) ≈ τ0.

Simple calculations yield Lnn ≈ 9 − 5.6 = 3.4. It follows that, for ε = 19.5% and T = 77 K, the number
of dislocations in the cluster is n ≈ 30. It is worth noting that the equidistant dislocation distribution in the
cluster determines the lower boundary of the number of dislocations. Dislocations in the cluster DF are responsible
for deviation from the linear relation τ = f(ρ0.5). Since the number of dislocations in the cluster depends on
the dislocation density ρ, the contribution to deformation resistance at T = 77 K should be higher than that
predicted by the linear relation τ = f(ρ0.5). We determine the contribution to deformation resistance using the
Seeger formula [23]. This formula allows one to calculate the long-range stresses caused by clusters of dislocations
at distances comparable with the average distance between dislocations:

τ = Gb
√
nρ1/2/(2πK).

For ε = 19.5%, we have ρ ≈ 10.4 ·109 cm−1. The other parameters are listed above. The estimates show that
τ ≈ 266.9 MPa. The contribution of clusters at the specimen edge to deformation resistance is rather considerable,
compared to that of shear stresses. The stress calculated by the formula

τ = Gbρ1/2 Lnn/(2πK),

which takes into account the stresses caused by clusters of dislocations, is equal to 165 MPa. An analysis of the
number of dislocations in the cluster DF for other orientations shows that n ≈ 30 for all the orientations. Even for
the [1̄39] orientation, for which the yield point is approximately 1.5 times that for the [1̄11] orientation, this number
is close to n ≈ 30. An analysis of the image stresses τim that occur owing to the effect of the specimen surface and
act on the head dislocation shows that they are negligible [17]: τim = Gb/(4π(Lsurf−Lcluster)) ≈ 1/6300 MPa, where
Lsurf is the distance from the surface to the head dislocation and Lcluster is the length of the cluster (Lsurf ≈ 10−4 m
and Lcluster ≈ 2700 nm for T = 77 K and ε ≈ 20%).

Thus, it has been shown that the contributions of dislocation clusters in the slip plane at the specimen edge
to deformation resistance can have a considerable effect on flow stresses at low test temperatures (T = 77 K), which
results in deviation from the linear relation τ = f(ρ0.5). The deviation from the linear relation is due to the fact
that sliding dislocations are attached to their slip plane owing to weak thermally activated processes on dislocations.

120



REFERENCES
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19. N. A. Koneva and É. V. Kozlov, “Nature of substructural hardening,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 3–

14 (1982).
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